35 research outputs found

    Box representations of embedded graphs

    Full text link
    A dd-box is the cartesian product of dd intervals of R\mathbb{R} and a dd-box representation of a graph GG is a representation of GG as the intersection graph of a set of dd-boxes in Rd\mathbb{R}^d. It was proved by Thomassen in 1986 that every planar graph has a 3-box representation. In this paper we prove that every graph embedded in a fixed orientable surface, without short non-contractible cycles, has a 5-box representation. This directly implies that there is a function ff, such that in every graph of genus gg, a set of at most f(g)f(g) vertices can be removed so that the resulting graph has a 5-box representation. We show that such a function ff can be made linear in gg. Finally, we prove that for any proper minor-closed class F\mathcal{F}, there is a constant c(F)c(\mathcal{F}) such that every graph of F\mathcal{F} without cycles of length less than c(F)c(\mathcal{F}) has a 3-box representation, which is best possible.Comment: 16 pages, 6 figures - revised versio

    Singular inextensible limit in the vibrations of post-buckled rods: Analytical derivation and role of boundary conditions

    Get PDF
    In-plane vibrations of an elastic rod clamped at both extremities are studied. The rod is modeled as an extensible planar Kirchhoff elastic rod under large displacements and rotations. Equilibrium configurations and vibrations around these configurations are computed analytically in the incipient post-buckling regime. Of particular interest is the variation of the first mode frequency as the load is increased through the buckling threshold. The loading type is found to have a crucial importance as the first mode frequency is shown to behave singularly in the zero thickness limit in the case of prescribed axial displacement, whereas a regular behavior is found in the case of prescribed axial load.This publication is based in part upon work supported by Award no. KUK-C1-013-04, made by King Abdullah University of Science and Technology (KAUST) (A.G.). A.G. is a Wolfson/Royal Society Merit Award holder. Support from the Royal Society, through the International Exchanges Scheme (Grant IE120203), is also acknowledge

    Colourings of cubic graphs inducing isomorphic monochromatic subgraphs

    Get PDF
    A kk-bisection of a bridgeless cubic graph GG is a 22-colouring of its vertex set such that the colour classes have the same cardinality and all connected components in the two subgraphs induced by the colour classes (monochromatic components in what follows) have order at most kk. Ban and Linial conjectured that every bridgeless cubic graph admits a 22-bisection except for the Petersen graph. A similar problem for the edge set of cubic graphs has been studied: Wormald conjectured that every cubic graph GG with E(G)0(mod2)|E(G)| \equiv 0 \pmod 2 has a 22-edge colouring such that the two monochromatic subgraphs are isomorphic linear forests (i.e. a forest whose components are paths). Finally, Ando conjectured that every cubic graph admits a bisection such that the two induced monochromatic subgraphs are isomorphic. In this paper, we give a detailed insight into the conjectures of Ban-Linial and Wormald and provide evidence of a strong relation of both of them with Ando's conjecture. Furthermore, we also give computational and theoretical evidence in their support. As a result, we pose some open problems stronger than the above mentioned conjectures. Moreover, we prove Ban-Linial's conjecture for cubic cycle permutation graphs. As a by-product of studying 22-edge colourings of cubic graphs having linear forests as monochromatic components, we also give a negative answer to a problem posed by Jackson and Wormald about certain decompositions of cubic graphs into linear forests.Comment: 33 pages; submitted for publicatio

    Labeling Schemes for Bounded Degree Graphs

    Full text link
    We investigate adjacency labeling schemes for graphs of bounded degree Δ=O(1)\Delta = O(1). In particular, we present an optimal (up to an additive constant) logn+O(1)\log n + O(1) adjacency labeling scheme for bounded degree trees. The latter scheme is derived from a labeling scheme for bounded degree outerplanar graphs. Our results complement a similar bound recently obtained for bounded depth trees [Fraigniaud and Korman, SODA 10], and may provide new insights for closing the long standing gap for adjacency in trees [Alstrup and Rauhe, FOCS 02]. We also provide improved labeling schemes for bounded degree planar graphs. Finally, we use combinatorial number systems and present an improved adjacency labeling schemes for graphs of bounded degree Δ\Delta with (e+1)n<Δn/5(e+1)\sqrt{n} < \Delta \leq n/5

    kk-Critical Graphs in P5P_5-Free Graphs

    Full text link
    Given two graphs H1H_1 and H2H_2, a graph GG is (H1,H2)(H_1,H_2)-free if it contains no induced subgraph isomorphic to H1H_1 or H2H_2. Let PtP_t be the path on tt vertices. A graph GG is kk-vertex-critical if GG has chromatic number kk but every proper induced subgraph of GG has chromatic number less than kk. The study of kk-vertex-critical graphs for graph classes is an important topic in algorithmic graph theory because if the number of such graphs that are in a given hereditary graph class is finite, then there is a polynomial-time algorithm to decide if a graph in the class is (k1)(k-1)-colorable. In this paper, we initiate a systematic study of the finiteness of kk-vertex-critical graphs in subclasses of P5P_5-free graphs. Our main result is a complete classification of the finiteness of kk-vertex-critical graphs in the class of (P5,H)(P_5,H)-free graphs for all graphs HH on 4 vertices. To obtain the complete dichotomy, we prove the finiteness for four new graphs HH using various techniques -- such as Ramsey-type arguments and the dual of Dilworth's Theorem -- that may be of independent interest.Comment: 18 page

    Read-through Activation of Transcription in a Cellular Genomic Context

    Get PDF
    Read-through transcription from the adjacent E1a gene region is required for wild-type (wt) activity of the downstream adenovirus E1b promoter early after infection (read-through activation). However, whether a cellular chromosomal template can support read-through activation is not known. To address this issue, read-through activation was evaluated in the context of stably expressed templates in transfected cells. Inhibition of read-through transcription by insertion of a transcription termination sequence between the E1a and E1b promoters reduced downstream gene expression from stably integrated templates. The results indicate that the mechanism of read-through activation does not depend on the structure of early adenovirus nucleoprotein complexes, a structure that is likely to be different from that of cellular chromatin. Accordingly, this regulatory interaction could participate in the coordinated control of the expression of closely linked cellular genes

    Nonrepetitive Colouring via Entropy Compression

    Full text link
    A vertex colouring of a graph is \emph{nonrepetitive} if there is no path whose first half receives the same sequence of colours as the second half. A graph is nonrepetitively kk-choosable if given lists of at least kk colours at each vertex, there is a nonrepetitive colouring such that each vertex is coloured from its own list. It is known that every graph with maximum degree Δ\Delta is cΔ2c\Delta^2-choosable, for some constant cc. We prove this result with c=1c=1 (ignoring lower order terms). We then prove that every subdivision of a graph with sufficiently many division vertices per edge is nonrepetitively 5-choosable. The proofs of both these results are based on the Moser-Tardos entropy-compression method, and a recent extension by Grytczuk, Kozik and Micek for the nonrepetitive choosability of paths. Finally, we prove that every graph with pathwidth kk is nonrepetitively O(k2)O(k^{2})-colourable.Comment: v4: Minor changes made following helpful comments by the referee

    Separation Choosability and Dense Bipartite Induced Subgraphs

    Get PDF
    Contains fulltext : 207677.pdf (postprint version ) (Open Access

    Single-conflict colouring

    No full text
    corecore